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Abstract

This paper explores the effect of disaster risk on the beliefs and portfolio choices of ambiguity-
averse agents. With the introduction of Cressie-Read discrepancies, a time-varying pessimism state
variable arises endogenously, generating time-varying disaster risk. In the event of a disaster, agents
heighten their pessimism, anticipating subsequent disasters to arrive sooner. Within this framework,
we deduce optimal consumption and portfolio choices that are robust to model misspecification. Ad-
ditionally, our measure of pessimism aids in understanding the stylized facts derived from Vanguard’s
retail investor survey data, as reported in Giglio et al., 2021.
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The seminal work of Hansen and Sargent posits that economic agents, averse to uncertainty, seek robustness
by considering a family of models constructed around a benchmark model and optimizing against the
worst case within this family. Their approach to robustness uses relative entropy, also known as Kullback-
Leibler entropy, to measure the discrepancy between models. This led to a worst-case model for the
decision-maker, representing endogenously distorted pessimistic beliefs. Building on this foundation,
Maenhout et al., 2021 replace relative entropy with the Cressie and Read, 1984 family of divergences,
creating a discrepancy measure that preserves recursivity and homotheticity. This adjustment allows for
the emergence of time-varying beliefs in the economy, a phenomenon also uncovered in empirical data.
They explore the implications for portfolio choice and asset prices, particularly under continuous asset
price movement. In our paper, we further this analysis by incorporating disaster risk and examining the
impact of negative jumps in asset prices on ambiguity-averse agents’ beliefs and portfolio choices. Our
work connects to the literature on time-varying disaster probability, such as studies by Drechsler, 2013 and
Wachter, 2013. With the introduction of Cressie-Read discrepancies, our model endogenously generates a
time-varying pessimism state variable, leading to time-varying disaster risk, which is negatively related to
expected return. This aligns with salient features observed in retail investors’ survey data as documented
by Giglio et al., 2021.

We summarize our main contributions as follows. We first carefully construct a generalization of
Hansen and Sargent’s robustness to incorporate disaster into asset prices. Relative entropy is nested as
a special case when the Cressie-Read parameter tends to unity. Following Maenhout et al., 2021, agents
consider Cressie-Read divergence as a penalty or cost function when minimizing distorted expected utility,
comprising an expected integral of suitably scaled and appropriately weighted discounted divergence
measures. This approach yields state-dependent belief distortion, except when η = 1, i.e., in the special
case of entropy. The parameter η governs the desire for intertemporal smoothness of belief distortions. We
show that for η < 1, the agent’s subjective beliefs are procyclical and become more pessimistic following
a disaster. Conversely, η > 1 leads to countercyclical subjective beliefs. Consequently, subjective disaster
risk also varies in response to economic shocks: when η < 1, it surges after negative jumps and decreases
following positive shocks, while the opposite effect occurs for η > 1.

Second, to further elucidate the underlying mechanisms, we examine a simplified two-stage model
where the belief distortion state variable is fixed at the start of each stage. Solving backward, we find
that in the second stage, the Cressie-Read investor’s beliefs depend only on the fixed state variable set
before the second stage. When η is less than one, negative jumps result in a more pessimistic expected
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return, and when η exceeds one, a more optimistic expected return ensues. In the first stage, the investor
anticipates the fact that future utility will depend on the future state of the economy. This anticipation
leads to an endogenous hedging demand against future random market conditions and associated belief
change. Using this intuition, we then illustrate the consequences of these rich dynamics in a simple
partial equilibrium portfolio problem; more specifically, we show that generalized robustness produces
intertemporal hedging and, therefore, state- and horizon-dependent portfolios, as well as state- and time-
dependent subjective disaster risk. This contrasts with the time-varying disaster literature, where disaster
probability is a mean-reverting process, independent of market state. Intuitively, because of time-varying
sentiment, disaster belief and investment opportunities are perceived by the investor as time-varying,
especially after the disaster happened. This contrasts with the entropy case, where disaster risk and
investment opportunities are seen as constant.

Third, we examine the dynamics of pessimism in the simulation. To this end, we reference Giglio et al.,
2021, who documented that “higher subjective probabilities of stock market disasters are associated with
lower expected stock market returns” in partial equilibrium. When a disaster occurs, the agent becomes
more pessimistic, believing that further disasters will soon follow. To test this hypothesis, we estimate
the empirical sensitivity of investors’ portfolio holding in perceived future disaster risk. Consistent
with our theory, we find strong evidence for a negative correlation between subjective probabilities of
market disasters and expected returns: disaster probability typically decreases over time but spikes sharply
following disasters, reflecting increased pessimism, and decreased expected returns. Furthermore, Monte
Carlo simulation reveals that an endogenous time-varying state variable leads to a heavy-tailed distribution
of optimal portfolio weight and expected return under subjective belief.

Related Literature

We contribute to several strands of the literature. Our paper builds on the robust control literature
such as the works of Hansen and Sargent, 2001, Anderson et al., 2003, and Maenhout, 2004, which
imposes an entropy penalty. Maenhout et al., 2021 consider extensions of entropy-based robustness
in portfolio choice, demonstrating that robustness with a Cressie-Read penalty produces time-varying
beliefs and risk aversion, leading to state- and horizon-dependent portfolios. Our work extends theirs by
incorporating disaster risk and generating time-varying risk probability for values of η ̸= 1. Moreover,
our model calibration reveals that time-varying pessimism induces a negative correlation between disaster
probability and expected return, as shown in survey data.

A large literature in asset pricing studies time-varying disaster risk. For example, Wachter, 2013
demonstrates that time variation in the probability of a consumption disaster drives high stock market
volatility and excess return predictability. Drechsler, 2013 constructs an equilibrium model, illustrating
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that fundamentals and model uncertainty, particularly jump shocks, may explain option prices and the
variance premium in both studies, the time-variation in disasters is modeled as an exogenous process:
a mean-reverting process in Wachter, 2013 and an autoregressive process in Drechsler, 2013. Different
from existing literature, our research illustrates that time-varying disaster risk is endogenous, driven by
stochastic sentiment, with the introduction of Cressie-Read discrepancies.

Another related strand of the literature examines the model misspecification concern of jump risk.
Liu et al., 2005 explain the skew in index option implied volatilities in equilibrium using investors’
uncertainty about rare events, assuming a constant disaster probability and focusing on equilibrium equity
prices. Concentrating on the portfolio choice problem,Ait-Sahalia and Matthys, 2019 derive robust
consumption and portfolio policies of an investor with recursive preferences, in a model with one risky
asset following a Lévy jump-diffusion process. Similarly, Jin et al., 2021 investigate portfolio construction
in a multi-asset market setting, considering tail risk and jump ambiguity. While both Ait-Sahalia and
Matthys, 2019 and Jin et al., 2021 employ a constant disaster probability, our paper contrasts this approach
by introducing subjective time-varying jump risk that arises endogenously, even under a constant jump
intensity.

We also contribute to the empirical literature examining investor crash beliefs through survey data. For
example, Goetzmann et al., 2016 use survey data to explore the magnitude of crash probabilities reported
by individual and institutional investors, finding that individuals’ assessment of future crash probability
increases following a negative market return. Giglio et al., 2021 further document a negative correlation
between subjective probabilities of stock market disasters and expected stock market returns, based on
Vanguard’s retail investors’ survey data. Our research extends the literature by providing a mechanism
that explains the observed patterns in expected return and subjective disaster risk, as outlined by Giglio
et al., 2021.

Outline of the Paper

The rest of the paper is organized as follows. Section 1 provides the theoretical framework and studies the
robust utility in the context of jump risks. Section 2 examines the dynamic portfolio problem. Section
3 presents the quantitative implications of our model for portfolio choices, linking these findings with
empirical results documented in the literature. Finally, Section 4 concludes.
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1 The Model

1.1 The Cressie-Read Divergence with Jump

1.1.1 Baseline and Subjective Beliefs

Consider a probability space (Ω, (Ft)t∈[0,T ] ,B). Here the filtration (Ft)t∈[0,T ] is the augmented filtration
generated by a standard Brownian motion BB and a Poisson random measure N(dt, dz), and satisfies the
usual hypothesis of right-continuity and completeness. Brownian motion and Poisson random measure
are assumed to be independent. The mean measure of N is denoted by λν(dz)dt, where the jump intensity
λ is assumed to be a positive constant and ν(dz) is the jump size distribution. Denote ÑB(dt, dz) =

N(dt, dz)− λν(dz)dt as the compensated Poisson random measure.
The measure B is called the baseline model. The investor worries about model misspecification and

entertains a family of alternative models. This family of alternative models is parameterized by a process
u and a function θ. Each alternative model U in this family is defined as follows. Given a bounded process
u, introduce ZD following the dynamics

dZD
t = −ZD

t−ut dB
B
t , 0 ≤ t ≤ T, ZD

0 = 1. (1)

Given a bounded function θ : [0, T ] × R → R and a constant ϵ > 0 such that θ(t, z) ≥ −1 + ϵ for any
(t, z) ∈ [0, T ]× R, introduce ZJ with the dynamics

dZJ
t = ZJ

t−

∫
R
θ(t, z)ÑB(dt, dz), 0 ≤ t ≤ T, ZJ

0 = 1. (2)

Introduce the Radon-Nikodym derivative

Zt = ZJ
t Z

D
t , 0 ≤ t ≤ T. (3)

Define U via
dU
dB

∣∣∣∣
FT

= ZT .1

1The boundedness assumptions on u and θ ensure EB[ZT ] = 1. Indeed, Bounded u and θ ensures the Novikov condition
EB
[
exp

(
1
2

∫ T

0
u2
sds+

∫ T

0

∫
R θ2(s, z)N(ds, dz)

)]
< ∞ in Øksendal and Sulem, 2019 Theorem 1.36, which establishes

sufficient conditions such that EB[ZT ] = 1.
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In the alternative model U, BB
t = BU

t −
∫ t

0
usds for a U-Brownian motion BU. Therefore the Brownian

motion BB, under the baseline model B, has the drift −ut under the alternative model U. Meanwhile, the
Poisson random measureN has the mean measure (1+θ(t, z))λν(dz)dt under the alternative modelU (see
e.g. Øksendal and Sulem, 2019, Theorem 1.33). Hence the jump intensity and the jump size distribution
are potentially different under the alternative model. In the special case, where θ is independent of z, the
jump intensity becomes (1 + θt)λ under the alternative model U.

1.1.2 Cressie-Read Divergence

The investor considers alternative models which are further away from the baseline model less likely.
Motivated by Maenhout et al., 2021, we introduce the Cressie-Read divergence to measure the discrepancy
between the baseline model B and the alternative model U:

RU
t =

1

Φt

EB
t

[ ∫ T

t

e−δ(s−t)Ψs−dDt,s

]
, (4)

where δ is a constant discount rate and Dt,s = ϕ(Zt,s), with ϕ(·) as the Cressie-Read divergence function
(Cressie and Read, 1984),

ϕ(z) =
1− η + ηz − zη

η(1− η)
, η ∈ R\{0, 1}.

The function ϕ is convex, satisfies ϕ(1) = 0, is decreasing when z ∈ (0, 1), and is increasing when
z > 1. When η = 1, the Cressie-Read divergence function, defined as the limit limη→1 ϕ(z), is the KL
divergence. When η = 0, the Cressie-Read divergence, also defined as the limit, corresponds to Burg,
1972 entropy, η = 1

2
describes the Hellinger, 1909 distance.

In (4), Φ and Ψ are two positive processes. Maenhout et al., 2021 show that Φt = Z1−η
t is the unique

choice so that the resulting Cressie-Read divergence RU is recursive and time-consistent. The weight
process Ψ is chosen later so that the investor’s optimization problem remains homothetic.

Lemma 1. When Φt = Z1−η
t and EB

[ ∫ T

0
e−δsΨp

s−ds
]
< ∞ for some p > 2, then RU

t can be decomposed
as

RU
t = RU,D

t +RU,J
t , 0 ≤ t ≤ T, (5)

where

RU,D
t = EU

t

[ ∫ T

t

e−δ(s−t)Ψs−Z
η−1
s−

1

2
u2
sds
]
, (6)

RU,J
t = EU

t

[ ∫ T

t

e−δ(s−t)Ψs−Z
η−1
s− λ

∫
R

(
1 + θ(s, z)

)η − 1− ηθ(s, z)

η(η − 1)
ν(dz)ds

]
. (7)
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Moreover, RU satisfies the following recursive relation

RU
t = EU

t

[ ∫ t̃

t

e−δ(s−t)Ψs−Z
η−1
s−

(1
2
u2
s+λ

∫
R

(
1 + θ(s, z)

)η − 1− ηθ(s, z)

η(η − 1)
ν(dz)

)
ds+e−δ(t̃−t)RU

t̃

]
, (8)

for any t, t̃ such that 0 ≤ t ≤ t̃ ≤ T .

When η = 1, the Cressie-Read divergence is equivalent to the entropy divergence

RU
t = EU

t

[∫ T

t

e−δ(s−t)Ψs−

(1
2
u2
t + λ

∫
R

[(
1 + θ(t, z)

)
log
(
1 + θ(t, z)

)
− θ(t, z)

]
ν(dz)

)
ds

]
(9)

which is identical to the relative entropy penalty in Branger and Larsen, 2013, except they only considered
jump intensity risk. The jump divergence in (9) is consistent with Liu et al., 2005 or Jin and Zhang, 2012,
where they specified distortion θ into intensity and size distortion separately. Our divergence measure
is closely related to Ait-Sahalia and Matthys, 2019, where they considered entropy penalty in a relative
entropy growth form and specified jump size as beta distribution.

The decomposition (5) split the Cressie-Read divergence into two components: the diffusion com-
ponent RU,D and the jump component RU,J . The diffusion component incorporates a quadratic penalty
function PDiffusion(u) =

1
2
u2 on the diffusion distortion u. The jump component depends on a penalty

function P η
Jump:

P η
Jump(θ) =


(1+θ)η−1−ηθ

η(η−1)
if η ̸= 1,

(1 + θ) log(1 + θ)− θ if η = 1.
(10)

This penalty function is nonnegative and convex in θ. Figure 1 plots the jump penalty and jump distortion
range against θ for different values of η. The left panel of Figure 1 shows that jump penalty P η

Jump(θ)

is increasing in η when θ is positive and is decreasing in η when θ is negative. Consequently, for a give
constraint level κ , the right panel of Figure 1 shows that the interval {θ ≥ 0 : P η

Jump(θ) ≤ κ} is shrinking
in η and {−1 < θ < 0 : P η

Jump(θ) ≤ κ} expanding in η. Overall, the investor entertains a larger set of
alternative jump models when η is smaller.

When η ̸= 1, the Cressie-Read divergence depends on the state Z. For given diffusion and jump
penalty functions PDiffusion and P η

Jump, the factor Zη−1 in front of them in (6) and (7) introduce state
dependence into the Cressie-Read divergence. For given u and θ, large Zη−1 increases the discrepancy.
This implies that deviating from U on states with larger values of Zη−1 is more costly. Meanwhile, from
the dynamics of Z in (1) and (2), we see that the value of Z depends on the historic Brownian shocks and
jumps from the Poission random measure. As we will show later, this is the key mechanism to generate
endogenous and dynamic beliefs on the diffusion and jump risks. For the portfolio choice problem that
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Figure 1: Jump penalty

The left panel plots the jump penalty function P η
Jump for different values of η. The right panel presents the interval

{θ ≥ 0 : P η
Jump ≤ κ} and {−1 < θ < 0 : P η

Jump ≤ κ} with κ = 0.5.

the investor considers, Z is the key state variable, which links investor’s past experience on diffusion and
jump shocks to his belief on future risks. When η = 1, Zη−1 ≡ 1, hence the Cressie-Read divergence is
state independent.

1.2 The Utility Index Process

Given a consumption stream c = {ct, t ∈ [0, T ]}, a diffusion distortion u and a jump distortion θ, we
define the utility of c under the model U as

U c,u,θ
t = EU

t

[∫ T

t

e−δ(s−t)δU (cs) ds+ e−δ(T−t)ζU (cT ) +
1

ΘD

RU,D
t +

1

ΘJ

RU,J
t

]
, (11)

where U is the utility function for the consumption rate c, ζU is the bequest utility with a positive
constant ζ , RU,D

t and RU,J are the diffusion and jump Cressie-Read discrepancy introduced in (6) and (7).
The positive constant parameters ΘD and ΘJ measure investor’s preference for robustness of diffusion
and jump risk, respectively. When ΘD (resp. ΘJ ) is larger, the investor concerns more about model
uncertainty in diffusion (resp. jump) risk.
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To evaluate the utility of the consumption stream c among all alternative models, the investor takes a
worst case approach. We define the utility index of the consumption stream c as

U c
t = inf

u∈[ū,ū],θ∈(−1,θ̄]
U c,u,θ
t . (12)

where ū > 0 and θ̄ > 0 are upper bound of process u and function θ respectively.
To illustrate the intuition of the utility index, let us consider an example of a consumption process c

following the dynamics
dct
ct−

= µcdt+ σcdB
B
t −

∫
R
zÑB(dt, dz), (13)

for a constant growth rate µc and a constant volatility σc. Jumps of the Possion random measure N is
assumed to be positive. Hence whenever a jump arrives, consumption drops and we interpret jumps as
disasters.

Under alternative measure U, associated with u and θ, the consumption dynamic follows

dct
ct−

=
(
µc − σcut − λ

∫
R
zθ(t, z)ν(dz)

)
dt+ σcdB

U
t −

∫
R
zÑU(dt, dz), (14)

where
ÑU(dt, dz) = N(dt, dz)− (1 + θ(t, z))λν(dz)dt (15)

is a compensated Poisson random measure under U. Consider u, θ > 0, due to the diffusion belief
distortion, the expected consumption growth rate decreases by σcu under U; due to the jump belief
distortion, the expected consumption growth rate decreases further by λ

∫
R zθ(t, z)ν(dz). The mean

measure of the Poisson random measure N becomes (1 + θ(t, z))λν(dz) under U. In the special case
where θ is positive and is independent of z, the jump intensity increases to (1 + θ(t))λ under U and the
jump size distribution remains ν(dz). Therefore the investor believes the disasters happen more frequently
and the expected consumption growth decreases as well.

In formulating the utility index U c, larger distortion u and θ decrease the consumption growth under
the alternative model U, hence the expected utility of consumption (the first two terms on the right-hand
side of (11)) decreases. Meanwhile, the Cressie-Read discrepancy (the last two terms on the right-hand
side of (11)) increases. The investor chooses the worst case belief distortion u and θ to minimize the
expected utility in (12). Given that the Cressie-Read discrepancy RU,D and RU,J depend on Z, Z becomes
a state variable for the optimization problem (12), together with the consumption stream c as another state
variable.

When η ̸= 1, the utility index U c is Markovian in the state variables c and Z, i.e., U c
t = U (t, ct, Zt)
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for a function U , which satisfies a HJB equation associated to the optimization problem in (12). The
following two results summarize the worst case belief distortions u∗ and θ∗. The result on u∗ is the same
as Proposition 1 in Maenhout et al., 2021.

Proposition 1 (diffusion distortion).

1. The optimal u∗ satisfies

u∗
t =

ΘDΓt [1 + Et]

Ψt

Z1−η
t (16)

where Γt = ∂ZU (−Zu∗)+∂cU (cσc) is the instantaneous volatility of the pessimistic utility U c and
Et =

Zt

Γt
∂ZΓt is the elasticity of Γt with respect to Zt.

2. u∗ is positive if and only if Γ[1 + E] is positive. For a fixed and positive Γ[1 + E], u∗ increases as
Z1−η increases.

3. When u∗ is positive, positive shocks to BB decrease Z, hence decrease Z1−η when η < 1, or
increase Z1−η when η > 1.

Proposition 2 (jump distortion).

1. The optimal θ∗ satisfies

θ∗(t, z) =

[
1− (η − 1)ΘJΛt[1 + Ft]

Ψt−
Z1−η

t−

] 1
η−1

− 1 (17)

where Λt = U
(
t, ct−(1 − z), Zt−(1 + θ(t, z))

)
− U

(
t−, ct−, Zt−)

)
is the utility change due to the

negative jump in consumption c and Ft =
Zt−
Λt

∂ZΛt is the elasticity of Λt with respect to Zt.

2. θ∗ is positive if and only if Λ[1 + F ] is negative. For a fixed and negative Λ[1 + F ], θ∗ increases as
Z1−η increases.

3. When θ∗ is positive, Z increases after NB jumps, hence Z1−η increases when η < 1, or Z1−η

decreases when η > 1.

For entropy discrepancy η = 1, optimal θ∗ becomes

θ∗(t, z) = exp

(
−ΘJΛt[1 + Ft]

Ψt−

)
− 1 (18)

where it’s now independent with state variable Z, and one can easily observe that θ∗ is positive if and only
if Λ[1 + F ] is negative.
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Consider a special case where θ in Equation 12 is chosen from the class of processes depending only
on time. Under baseline model B,

dct
ct−

= (µc + λJ̄c)dt+ σcdB
B
t − J c

t dNt (19)

where the disaster in consumption modeled as a Poisson process Nt with rate λ. The change in consump-
tion, should a disaster occur, is J c

t , a random variable following time-invariant distribution ν(dz) with
mean J̄c. Under alternative measure U, with Poisson rate λ(1 + θt),

dct
ct−

=
(
µc − σcut − λθtJ̄c

)
dt+ σcdB

U
t −

(
J c
t dNt − λ(1 + θt)J̄cdt

)
(20)

The optimal θ is independent of z, and follows

θ∗t = [1− (η − 1)ΘJEν(dz)[Λt][1 + Ft]

Ψt−
Z1−η

t− ]
1

η−1 − 1 (21)

whereEν(dz)[Λt] =
∫
R

[
U
(
t, ct−(1− J c

t ), Zt−(1 + θt)
)
− U

(
t−, ct−, Zt−)

)]
ν(dz) is the expected marginal

utility change due to the negative jump in consumption, and independent of jump size. Similarly,
Ft =

Zt−
Eν(dz)[Λt]

Eν(dz)[∂ZΛt] is the expected elasticity of Λt with respect to Zt. In this scenario, the intensity
of jumps under U is 1 + θ∗t times bigger than before but jump size distribution is unaffected, i.e., only
jump intensity increases.

2 The Portfolio Choice Problem

We now consider an optimal consumption-investment problem where the investor’s utility toward con-
sumption is specified by (12). We focus on the case where the investor concerns about misspecification
on the intensity of negative return jumps. We will demonstrate how investor’s past experience on negative
return jumps shapes his expectation on the likelihood of future disasters and impact on his consumption
and investment decisions.
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2.1 Model Setup

Consider the market with a constant risk-free rate r, a risky asset with a jump-diffusion dynamics with
compound Poisson jumps:

dSt

St−
= (µ+ λJ̄)dt+ σdBB

t − JtdNt (22)

where µ is a constant expected return, σ is a constant return volatility, N is a Poisson process with a
constant jump intensity λ, {Jt} is a sequence of i.i.d. random variables with distribution ν on (0, 1), and
J̄ is the mean jump size.

Given a bounded process u and a function θ : [0, T ] → R, the risky asset follows the following
dynamics under the alternative model U:

dSt

St−
=
(
µ− σut − λJ̄θt

)
dt+ σdBU

t − (JtdNt − λ(1 + θt)J̄dt), (23)

where dBU
t = utdt + dBB

t and N has the time-dependent intensity λ(1 + θt). Therefore the agent’s
subjective expected return is µ − σut − λJ̄θt. When u and θ are both positive, the subjective expected
return under U is reduced compared with the objective expected return under B. In contrast to Ait-Sahalia
and Matthys, 2019, our model does not feature the trade off between a higher frequency of jumps and
a higher jump risk premium. Larger θ increases jump frequency under U and reduces asset’s expected
return as well.

Given a portfolio weight π and a consumption rate c, investor’s wealth process follows the dynamics

dWt =
[
rWt− +Wt−πt(µ+ λJ̄ − r)− ct

]
dt+Wt−πtσdB

B
t −Wt−πtJtdNt. (24)

The investor chooses his optimal strategy (π, c) to maximize the utility index of consumption

Vt = sup
(π,c) admissible

U c
t , (25)

subject to the wealth dynamics (24). The utility index U c
t is given in (12). The strategy (π, c) is admissible

if it is predictable with respect to investor’s filtration F and πt ≤ 1/Jmax for any t, where Jmax is a positive
constant, strictly less than 1, such that the jump size distribution ν has a compact support inside [0, Jmax].
Therefore, πtJt < 1 for any t so that W > 0 at all time.

The utility for intertemporal and bequest consumption is U (cs) =
c1−γ

1−γ
with the relative risk aversion

0 < γ ̸= 1. To maintain homotheticity with respect to investor’s wealth, we follow Maenhout, 2004 and
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choose Ψt = (1− γ)Vt in (6) and (7).2
Combining the form of RU in Lemma 1, U c

t in (12), and the choice of Ψ yields the value function (25)
as

Vt = sup
π,c

inf
u,θ

EU
t

[ ∫ T

t

e−δ(s−t)
(
δU (cs) + (1− γ)Vs−Z

η−1
s− P (us, θs)

)
ds+ e−δ(T−t)ϵU (cT )

]
, (26)

where

P (us, θs) =
1

2ΘD

u2
s +

λ

ΘJ

(
1 + θs

)η − 1− ηθs

η(η − 1)
. (27)

is obtained from Cressie-Read divergence. In (26), Vt depends on future values Vs, s ∈ [t, T ], problem
(26) is an optimization problem for a recursive utility. The choice of Ψ maintains the homotheticity with
respect to investor’s wealth, the value function can be decomposed as

Vt = Vt(Wt, Zt) =
W 1−γ

t

1− γ
f(t, Zt), (28)

for some function f .

2.2 A Two-stage Example

We now illustrate the intuition of the problem (25) using a two-stage example. In the first stage, t ∈ [0, 1);
in the second stage, t ≥ 1. In stage 1, the investor does not update the value of Z, i.e., Zt ≡ Z0 for
t ∈ [0, 1). The investor chooses the belief distortion (u0, θ0) at time 0 and keep it constant until time
1. At time 1, the investor updates Z to Z1, using the shocks experienced before time 1. The investor
updates the belief distortion to (u1, θ1), and chooses the portfolio and consumption strategy for the second
stage. In stage 2, Zt ≡ Z1 for t ≥ 1. Therefore the investor keeps the belief distortion (u1, θ1) and the
consumption-investment strategy constant in the second stage.

We solve the two-stage problem by backward induction. For the second stage, agent’s optimal
consumption-investment problem is

Vt = inf
u1,θ1

sup
π,c

EU
t

[ ∫ ∞

t

e−δ(s−t)
(
δU (cs) + (1− γ)Vs−Z

η−1
1 P (u1, θ1)

)
ds
]
, t ≥ 1, (29)

2Because Uc
t depends on Vs for s ∈ [t, T ], problem (25) becomes an optimization problem for a recursive utility; see also

Maenhout et al., 2021
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subject to wealth dynamic (24).
Because the problem is homothetic in wealth and Zη−1

1 is a constant in (29). The investor’s optimal
belief distortion and consumption-investment strategy are constants and can be obtained by solving an
algebraic equation (A.14). The dependence of optimal belief distortion and consumption-investment
strategy on Zη−1

1 is summarized in the following result.

Proposition 3. When Zη−1
1 increases, the agent’s optimal portfolio weight π1 increases, diffusion

distortion u1 and jump distortion θ1 decrease.

When ut ≡ u0 and θt = θ0 for any t ∈ [0, 1), Z1 = exp
(
− 1

2
u2
0 − λθ0 − u0B

B
1 + ln(1 + θ0)N1

)
.

Suppose that u0 > 0 and θ0 > 0, we now examine the impact of shocks on optimal portfolio and belief
distortions. If η < 1, positive shocks to BB

1 increase Zη−1
1 , leading the agent to increase her portfolio

weight π∗
1 in risky asset, and decrease her belief distortion u∗

1 and θ∗1, according to Proporition 3. After
negative shocks to BB

1 or negative jumps (i.e. disasters) in stock returns, Zη−1
1 decreases. Consequently,

agent reduces π∗
1 while increasing u∗

1 and θ∗1. When η > 1, the investor behaves in an opposite way.
We focus on the impact of negative jumps in returns. In the case η < 1, as previously discussed,

two belief distortions increase after negative jumps, generating a more pessimistic expected return µ −
σu1−λJ̄θ1. Meanwhile, the investor’s subjective disaster intensity λ(1+θ1) increases, hence the investor
expects more frequent future disasters in his worst-case belief. As the investor becomes more pessimistic,
he reduces his portfolio weight in the risky asset. In this case, the pessimism is countercyclical with the
realized return. When η > 1, after negative jumps, investor’s subjective disaster intensity decreases, and
the expected return increases. The investor becomes less pessimistic and increases his optimal portfolio
weight π∗

1 . Therefore pessimism is procyclical with the realized return. Negative return shocks from BB
1

share a similar impact with negative jumps. Positive return shocks lead to an opposite effect. Table 1
summarizes these results.

Table 1: Responses to Exogenous Shocks

Z1 u∗
1 θ∗1 π∗

1 Sentiment Subjective
Disaster Intensity

η < 1
∆BB > 0 ↓ ↓ ↓ ↑ less pessimistic
∆BB < 0 or disaster ↑ ↑ ↑ ↓ more pessimistic ↑

η > 1
∆BB > 0 ↓ ↑ ↑ ↓ more pessimistic
∆BB < 0 or disaster ↑ ↓ ↓ ↑ less pessimistic ↓

14



For the first stage, the agent’s value function is

Vt = inf
u0,θ0

sup
π,c

EU
t

[ ∫ 1

t

e−δ(s−t)
(
δU (cs)+(1−γ)Vs−Z

η−1
0 P (u0, θ0)

)
ds+e−δ(1−t)V1

]
, 0 ≤ t ≤ 1, (30)

where Z0 = 1. Because V1 equals to W 1−γ
1

1−γ
f(Z1) and depends on Z1, intertemporal hedging demand

emerges in the first stage, against market volatility, disaster probability, and changing belief distortion at
time 1.

2.2.1 Numerical Illustrations

We now use a numerical example to illustrate the dependence of optimal portfolio choice and worst-case
belief distortion in the second stage on the state variable Z1. We assume a constant return jump size for
illustration purpose.

Table 2: Parameter Values
Parameter Variable Value
r Interest Rate 0.03

δ Discount Rate 0.03

µ Expected Stock Return 0.1

σ Stock Volatility 0.2

λ Constant Jump Intensity 0.1

J Stock Jump Size 0.2

γ Risk Aversion 6

ΘD Preference Parameter for Diffusion Ambiguity 1

ΘJ Preference Parameter for Jump Ambiguity 1

For illustration, we introduce a monotone transformation x = − logZ1, so that when u0, θ0 > 0,
x increases (decreases) after positive (negative) shocks. Figure 2 presents two cases with η < 1 and
η > 1, respectively. Panel A in Figure 2 presents the case η = 0.5. Positive shocks increases x, the
investor becomes less pessimistic, his belief distortion u∗

1 and θ∗1 both reduce, expected return increases,
and portfolio holding π∗

1 increases. Panel B presents the case η = 1.5. Positive shocks increases x,
the investor becomes more pessimistic, his belief distortions increase, both expected return and portfolio
holding decline. These results are consistent with Table 1.
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Figure 2: Optimal portfolio and belief distortions

This figure plots worst-case belief distortions (u∗
1, θ

∗
1) and the optimal portfolio weight π∗

1 in the second stage. The parameters
used are summarized in Table 2.

2.3 Dynamic Optimal Consumption and Portfolio Choice

Having built up intuition from the two-stage example, we examine the fully dynamic problem (26) and
identify the optimal consumption, portfolio choice, and the worst-case belief. We introduce the following
variable x as the state variable of the problem (26):

xt = − logZt. (31)

We derive from (1) and (2) that x follows the dynamics

dxt =
(1
2
u2
t + λθt

)
dt+ utdB

B
t − ln

(
1 + θt

)
dNt. (32)

When u and θ are positive, jumps and negative Brownian shocks decrease x, meanwhile positive Brownian
shocks increase x. We call x the sentiment variable and use it as the state variable for problem (26).

We introduce two constants x and x satisfying x < 0 < x̄. We fix x (resp. x) to be sufficiently small
(resp. large), so that x > x (resp. x < x) correspond to Z close to 0 (resp. large Z). We regard it as
unreasonably underweight (resp. overweight) in the alternative model U. Define a stopping time

τ = inf {t ≥ 0 : xt ≤ x or xt ≥ x̄} . (33)
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When t > τ , we freeze Zτ at e−xτ and set the Cressie-Read discrepancy in (11) as

1

ΘD

RU,D
t +

1

ΘJ

RU,J
t = EU

t

[∫ T

t

e−δ(s−t)Ψse
(1−η)xτ

(
1

2ΘD

u2
s +

λ

ΘJ

(
1 + θs

)η − 1− ηθs

η(η − 1)

)
ds

]
. (34)

As we will see in Theorem 4, this specification helps to pin down boundary conditions for the HJB
equation.

The choice Ψ = (1 − γ)V maintaines the homothetic property for problem (26). Take W and x as
the state variables, the value function V in (26) has the following decomposition

Vt =
W 1−γ

t

1− γ
ef(t,xt). (35)

The following result characterizes the function f and identifies agent’s optimal consumption investment
strategies and the worst-case belief distortion.

Proposition 4. Suppose that f is a classical solution of the following HJB equation

0 = sup
π,c̃

inf
θ,u

{
∂tf

1− γ
+ ∂xf

[
πσu− 1

2(1− γ)
u2 +

λ

1− γ
θ

]
+

(∂xf)
2 + ∂xxf

2(1− γ)
u2

+
λ(1 + θ)

1− γ

{
Eν

[
(1− πJ)1−γ] ef(x−ln(1+θ))−f(x) − 1

}
+

δ

1− γ
c̃1−γe−f

+ r + π
(
µ− r − σu+ λJ̄

)
− c̃− 1

2
γπ2σ2 − δ

1− γ
+ e(1−η)xP (u, θ)

} (36)

for (t, x) ∈ [0, T )× (x, x̄), and the boundary conditions

f(t, x) = f fr
x (t), x ≤ x, f(t, x) = f fr

x̄ (t), x ≥ x̄, and f(T, x) = log ζ.

The function P in (36) is given in (27).
Then, the optimal belief distortions u∗ and θ∗, the optimal investment strategy π∗, and the optimal
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consumption-wealth ratio c̃∗ = c∗

W
satisfy the following first-order conditions

u∗ =
(1− γ)(1− ∂xf)

(∂xf)2 + ∂xxf − ∂xf + 1−γ
ΘD

e(1−η)x
σπ∗, (37)

0 =
1

ΘJ

e(1−η)x (1 + θ∗)η−1 − 1

η − 1
+

1− ∂xf

1− γ

{
ef(t,x−ln(1+θ∗))−f(t,x)Eν

[
(1− π∗J)1−γ]− 1

}
, (38)

µ− r =γeffπ∗σ2 − λJ̄ + λ (1 + θ∗) ef(t,x−ln(1+θ∗))−f(t,x)Eν

[
(1− π∗J)−γ J

]
, (39)

c̃∗ =δ
1
γ e−

1
γ
f(x), (40)

where γeff = γ + (1−γ)(1−∂xf)2

(∂xf)2+∂xxf−∂xf+
1−γ
ΘD

e(1−η)x .

When x ≤ x or x ≥ x̄, f fr
x satisfies the following ODE

0 =
∂tf

fr
x

1− γ
+

δ

1− γ
δ

1
γ e−

1
γ
f fr
x +

λ(1 + θfr)

1− γ

{
Eν [
(
1− πfrJ

)1−γ
]− 1

}
+ r + πfr (µ− r − σufr + λJ̄

)
− c̃fr − 1

2
γπfr2σ2 − δ

1− γ
+ e(1−η)xP (ufr, θfr),

(41)

with boundary terminal conditions fx(T ) = log ζ . In (41), ufr, θfr and πfr satisfy

ufr =ΘDe
(η−1)xσπfr, (42)

θfr =

[{
Eν

[(
1− πfrJ

)1−γ
]
− 1
} 1− η

1− γ
ΘJe

(η−1)x + 1

] 1
η−1

− 1, (43)

µ− r =
(
γ +ΘDe

(η−1)x
)
σ2πfr − λJ̄ + λ(1 + θfr)Eν

[(
1− πfrJ

)−γ
J
]
. (44)

Equation (39) implies that the risk premium µ − r can be attributed into hedging demand from
diffusion risk and from jump risk. The first term on the right-hand side of (39), γeffπ∗σ2, is the risk
premium associated to the diffusion risk. We interpret γeff as the effective risk aversion, which is belief-
and state-dependent. The rest terms on the right-hand side of (39) constitute the jump risk premium.
λ (1 + θ∗) is subjective jump intensity and ef(x−ln(1+θ∗))−f(x)Eν

[
(1− π∗J)−γ J

]
is the ratio of marginal

values of investment after and before a return jump. As the investor anticipates future changes in the
sentiment variable, a Merton-type intertemporal hedging demand emerges. In (38), the optimal belief
distortion in jump θ∗ is determined by equating the marginal cost 1

ΘJ
e(1−η)x (1+θ∗)η−1−1

η−1
with the marginal

gain ∂xf−1
1−γ

{
ef(x−ln(1+θ∗))−f(x)Eν

[
(1− π∗J)1−γ]− 1

}
.
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When η = 1, the optimal solutions in (37) - (39) are state independent and satisfy:3

u∗ = ΘDσπ
∗ (45)

0 =
1

ΘJ

log(1 + θ∗) +
1

1− γ

{
Eν

[
(1− π∗J)1−γ]− 1

}
(46)

µ− r = (γ +ΘD)π
∗σ2 − λJ̄ + λ (1 + θt)Eν

[
(1− π∗J)−γ J

]
. (47)

This is consistent with Liu et al., 2005, who consider both jump intensity and size uncertainty using the
entropy discrepancy.

2.4 Numerical Results

In this section, we present our model implications using numerical solutions of the HJB equation (36).

2.4.1 State Dependence

Investor’s worst-case belief and optimal portfolio are state-dependent. To illustrate this, we consider a
short horizon problem with 1 year time horizon.
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Figure 3: State dependence for different η

This figure presents the worst-case belief distortions and the optimal portfolio weight at time zero. The time horizon is T=1
year and other parameters are summarized in Table 2.

Figure 3 presents the diffusion distortion u∗, jump intensity distortion θ∗, and portfolio choice π∗ for

3The case of η = 1 is discussed in Appendix C
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different values of η. When η = 1, the discrepancy measure in (8) is the entropy case. In this case,
Figure 3 shows that portfolio allocation and belief distortions are state independent.

When η < 1, as x increases, sentiment improves, both u and θ decrease, the investor becomes less
pessimistic, and increases risky asset weight the portfolio. When η > 1, as x decreases, sentiment
deteriorates, both u and θ increase, the investor becomes more pessimistic, and invests less in the risky
asset. Moreover, Figure 3 shows the further η is away from 1, the more state dependence of the belief
distortions and portfolio strategy are.

We now change the jump intensity or jump size to study the impact of jump on the state-dependence.
Figure 4 presents the optimal (u∗, θ∗, π∗), compensations for diffusion risk and jump risk across

various values of jump intensity λ. When λ increases, the jumps come more frequently, and new arrivals
become less surprising. As a result, θ∗ becomes smaller as λ increases, as Figure 4 Panel B illustrates.
Nevertheless, larger λ still increases λJ̄θ∗, which reduces the expected return under the worst-case belief
U (see (23)). Therefore, the portfolio weight π∗ decreases, as Figure 4 Panel C shows. Panel D shows
that the state-dependent term (1−γ)(1−∂xf)

(∂xf)2+∂xxf−∂xf+
1−γ
ΘD

e(1−η)x on the right-hand side of (37) remains roughly
the same as λ increases. Therefore (37) shows that u∗ decreases with π∗ as λ increases. Even though
the reduction of u∗ increases the expected return under the worst-case belief U, the reduction from jump
component, λJ̄θ∗, still dominates, so that the expected return µ− σu∗ − λJ̄θ∗ decreases as λ increases.
Given risk premium µ − r = 0.07, higher jump intensity induces larger jump risk, requiring higher
compensation for jump risk, while the compensation for diffusion risk decreases. This trade-off between
diffusion risk and jump risk is shown in Panel E and F in Figure 4.

Figure 5 shows the impact of jump size on belief, portfolio allocation, and risk premium decomposition.
Arrival of jumps with larger jump size is more surprising, therefore θ∗ increases with the jump size. This
increases λJ̄θ∗ hence reduces the expected return under the worst-case belief U and the portfolio weight
π∗. Meanwhile, as Figure 5 shows, the state-dependent term on the right-hand side of (37) remains
roughly the same as λ increases. Therefore, u∗ decreases with π∗ as the jump size increases. Meanwhile,
larger jump size demands higher compensation for jump risk, hence lower compensation for diffusion
risk.

2.4.2 Time-to-horizon Effect

To examine the intertemporal hedging, we increase the time horizon to T=100 years and present the
optimal distortions and portfolio weight at x = 0 for different η, jump intensity and size.

Figure 6 shows myopic behavior for the entropy case (η = 1). When η ̸= 1, the diffusion distortion
u∗, jump intensity distortion θ∗ and portfolio choice π∗ depend on time-to-horizon.
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Figure 4: State dependence for different λ

This figure plots optimal distortions, portfolios, and jump intensity change at time zero. The time horizon is T=1 year and
other parameters are summarized in Table 2.

Following the same intuition of the two-stage example, when η < 1, pessimism is countercyclical, a
disaster in return is associated with a deterioration in sentiment, which deepens pessimism and decreases
the subjective expected return on the risky asset. In other words, when η < 1, realized returns and
subjective expected returns are positively correlated, which leads to negative intertemporal hedging
demands that grow with the time-to-horizon, shown in Figure 6 in the case η = 0.5. When η > 1,
pessimism is procyclical, a disaster in return leads to reduction in pessimism and increase in the subjective
expected return. Therefore, a negative correlation emerges between realized returns and the subjective
returns. This explains the positive intertemporal hedging demand for the case η = 1.5 in Figure 6 Panel
C. This hedging demand also grows as time-to-horizon increases.
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Figure 5: State dependence for different J

This figure plots optimal distortions and portfolios at time zero. The time horizon is T=1 year and other parameters are
summarized in Table 2.

2.4.3 Dynamic response to jumps

We now examine the effect of jumps on the dynamics of state variable, the belief distortion, and portfolio
choice via a simulation exercise. We simulate the dynamics of x following (32) for 30 years. We choose
θJ = 20 so that the investor has strong concern in jump intensity ambiguity. This choice highlights the
jump effect in our model.

Figure 7 presents a sample path. The worst-case jump belief distortion θ∗ is positive. Therefore, in
absent of jumps, the state variable x drifts upward, due to its positive drift 1

2
|u∗

t |2 + λθ∗t in (32). Upon
arrival of Poisson jumps, represented by red vertical lines in Figure 7, x jumps down. We choose η = 0.7

for our simulations. Therefore the worst-case jump belief distortion θ∗ decreases with x, as Panel B of
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Figure 6: Optimal distortion and portfolio

This figure plots optimal distortions and portfolios at x = 0. The time horizon is T=100 years and other parameters are
summarized in Table 2.

Figure 3 indicates. Consequently, the jump size ln(1 + θ∗t ) is larger when x is lower. Because θ∗ is
positive, the subjective jump intensity λ(1+θ∗) is always larger than the objective jump intensity λ = 0.1.
As Panel B of Figure 7 shows, in absent of jumps, the subjective jump intensity declines. This is because
the state variable x increases and θ∗ decreases with the state variable. Upon arrival of Poisson jumps, due
to the downward jump of the state variable, the subjective jump intensity jumps up. Therefore, there is a
self-exciting pattern in investor’s belief in the likelihood of future disasters: when the investor observes
a return disaster, he anticipates a higher probability of disasters in the future; if he experiences a period
without disasters, he also anticipates a lower probability of disasters in the future. In contrast to Hawkes
processes, whose objective jump intensity increases after arrivals of jumps, the effect described before is
purely subjective, the objective jump intensity remains a constant λ = 0.1 regardless of the jump arrivals.
Nevertheless, changes in agent’s subject belief on jumps impact his subjective expected return and his
portfolio choice. Panel C of Figure 7 shows that investor’s subjective expected return drifts upward in
absent of disasters, but jumps downward upon arrival of disasters, because the investor anticipates a higher
likelihood of disasters in the future. Consequently, the investor’s portfolio weight increases following his
improved sentiment, but jumps downward after arrivial of each disaster, as Panel D of Figure 7 indicates.
In contrast, the model with entropy divergence, i.e., η = 1, displays state and time-independent subjective
jump intensity and portfolio choice, see the dotted dash line in Figure 7.

Compared with Bayesian learning, the state variable drives investor’s belief and portfolio choice in our
model. If there is a disaster, the state variable, expected return, and portfolio weight change significantly,
no matter how many disaster have happened before. When an investor learns an unknown jump intensity
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Figure 7: A Simulation Path When η < 1

The figure plots a simulated path of state variable, subjective disaster probability, expected return, and portfolio choice from 0
to 30 years. The parameters used are summarized in Table 2 with θD = 1, θJ = 20, η = 0.7, x = −3, and x̄ = 3.

parameters, his posterior belief on the intensity parameters becomes more accurate as he observes more
disasters, hence future disasters have decreasing impact on investor’s posterior belief and less impact on
investor’s portfolio choice.

Figure 8 presents the distribution of the state variable, subjective jump intensity, subjective expected
return, and portfolio choice. All of them presents a heavy-tailed nature, resulting from higher subjective
jump intensity after disasters.

Figure 9 presents a sample path for the case with η > 1. The state variable jumps downward after
each return disaster. However, in contrast to the η < 1 case, the subjective jump intensity drops after each
disaster. The investor anticipates smaller likelihood of future disasters given that one just happened. As
a result, both the subjective expected return and the portfolio weight jump upward after each disaster.
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Figure 8: Simulation Distribution Based on Our Model

This figure plots the histograms of sentiment variable, expected return, jump probability, and portfolio weight between years
10 and 20, with T=30 among 104 simulated path. The parameters used are summarized in Table 2 with θD = 1, θJ = 20 and
η = 0.7.

3 Connection with survey evidence

Giglio et al., 2021 examines a series of surveys administered to Vanguard retail investors. These surveys
elicit investors’ belief on future economy states such as GDP growth and stock market expected returns.
The authors match beliefs of respondents with their portfolio composition, trading activity, and login
behavior. The study reveals that investors’ belief influence their portfolio allocations and trading decisions,
demonstrates significant individual heterogeneity in beliefs, and identifies the relationships between
expected returns and expected cash flow growth, as well as the one year subjective probability of rare
disasters.

In particular, Giglio et al., 2021 documents that investors who believe a higher probability of disaster
(1-year stock returns of less than −30%) has a lower subjective expected return and equity share in their
portfolios. In this section, we examine the same linear regressions (subjective expected returns and risky
asset weights on the subjective disaster probability) as in Giglio et al., 2021 using our model simulated
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Figure 9: A Simulation Path When η > 1

The figure plots a simulated path of state variable, subjective disaster probability, expected return, and portfolio choice from 0
to 30 years. The parameters used are summarized in Table 2 with θD = 1, θJ = 20, η = 1.3, x = −3, and x̄ = 3.

data and compare the regression results with the survey evidence documented by Giglio et al., 2021.
We simulate our model using parameters in Table 3. We choose the equity premium µ− r = 7.39%

and the return volatility σ = 0.1598 from Campbell, 2017. The return jump size is set to be 0.3, mapping
to the empirical specifications in Giglio et al., 2021. The jump intensity λ measures the objective disaster
probability in a year. Therefore we map the model jump intensity to the empirical disaster probability,
and use jump intensity and disaster probability interchangeably in this section. We choose λ = 0.1 so
that the resulting mean of subjective disaster probability roughly agrees with the empirical mean from
surveys. We set the Cressie-Read parameter to be η = 0.8 so that disasters introduce more pessimistic
belief and there is a countercyclic portfolio weight. We choose ΘJ larger than θD so that the investor
has more model ambiguity concern on disaster probability because disasters are rare events in historic
data. The investment horizon T is set to be 30 years mapping to the average investment horizon of a retail
investor before retirement.

Figure 10 illustrates distributions of the state variable, subjective disaster probability, subjective
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Table 3: Parameter Values
Parameter Variable Value
r Interest Rate 0.02
δ Discount Rate 0.02
µ Expected Stock Return 0.0939
σ Stock Volatility 0.1598
λ Stock Jump Intensity 0.1
J Stock Jump Size 0.3
γ Risk Aversion 2
η Cressie-Read Parameter 0.8
ΘD Preference Parameter for Diffusion 1
ΘJ Preference Parameter for Jump 5
T Time Horizon 30

We choose x = −3 and x̄ = 3 and simulate 104 paths of the state variables starting from x0 = 0. To mitigate the dependence
on the initial value, we use the simulated panel data at t = 5 year for the model-based regressions.

expected return, and portfolio weight among simulated panel data at t = 5 year. Compared to the
objective belief, the subjective belief exhibits a higher disaster probability due to positive jump belief
distortion θ∗. The average subjective disaster probability is 20.4% consistent with the empirical mean
in Giglio et al., 2021. The average subjective expected return is approximately 5.4%, and the average
portfolio weight is about 34.1%. This is consistent with the high portfolio weight found by Giglio et al.,
2021, even in the absence of a high risk aversion level.

Figure 11 presents the relationship between the subjective expected return with the state variable.
Because η is less than 1, the subjective expected return increases with the state variable. Meanwhile,
due to positive jump belief distortion θ∗, disasters reduce the level of state variable. Hence investor’s
subjective expected return jumps downward after each disaster. Focusing on time-series, rather than
cross-sectional, of disasters in simulated paths, our simulation shows that the model-generated subjective
expected return decreases on average by 4.75% compared with its pre-disaster level when disasters occur;
meanwhile, the portfolio weight decreases by 8.6% compared with pre-disaster level.

Giglio et al., 2021 estimate the sensitivity of the subjective expected return to the subjective disaster
probability with the following regression:

Subjective Expected Returni = α + β × Subjective Disaster Probabilityi + ϵi, (48)

where each i corresponds to each survey respondent. Meanwhile, the risky asset weight is influenced by
a variety of factors. Giglio et al., 2021 examine the relationship between the risky asset weight and the
subjective disaster probability, the subjective expected return, and the volatility of expected return via the
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Figure 10: Simulation Distribution

This figure plots the histograms of sentiment variable, expected return, jump probability, and portfolio weight in the fifth year,
with T=30. The parameters used are summarized in Table 3.

regression:

Risky Asset Weighti = α + β1 × Subjective Disaster Probabilityi

+ β2 × Subjective Expected Returni

+ β3 × Standard Deviation Expected Returni + ϵi.

(49)

We simulate 104 paths of the state variable and average the subjective disaster probability, the sub-
jective expected return, and risky asset weight within the tenth year within the simulation i to construct
the variables Subjective Disaster Probabilityi, Subjective Expected Returni, and Risky Asset Weighti,
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Figure 11: Expected Return under Subjective Belief

This figure plots subjective expected return against sentiment variablex, with fixed t at the fifth year and parameters summarized
in Table 3.

respectively. Using the simulated data, we examine the regressions (48) and (49).
Table 4 summarizes the model-generated results. Our model generates similar impact of subjective

disaster probability on the subjective expected return and portfolio weight as Giglio et al., 2021. Column
2 in Table 4 shows that one percent increase in the subjective disaster probability is associated with a
0.352 percent decrease in the subjective expected return, compared to 0.146 percent decrease in Giglio
et al., 2021. Meanwhile, Column 4 shows that an percent increase in the subjective disaster probability
decreases the risky asset weight by 4.149 percent in our model. In our model, this reduction is due to two
factors: the reduction in the subjective expected return and the increase in investor’s implicit risk aversion.
When controlling for expected return and volatility of return, one percent increase in the subjective disaster
probability reduces the weight of risky asset by 0.574 percent, comparing to 0.116 percent decrease in
Giglio et al., 2021. Even though the subjective expected return and subjective disaster probability are
highly correlated in our model, the coefficient of disaster probability remains significant after introducing
the subjective expected return as a control.

In our simulation, a one-standard-deviation increase in the subjective disaster probability is associated
with a 2.19 percentage point lower risky asset weight. This consists with the result in Giglio et al., 2021
that “A one-standard-deviation increase in the perceived stock market disaster probability is associated
with about a one percentage point lower equity share.”
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4 Conclusion

The paper analyzes the portfolio planning problem in a jump-diffusion model when there is model
uncertainty. The investor is ambiguity averse and relies on a robust control approach, following Maenhout
et al., 2021. Different from their paper, we incorporate uncertainty about both jump risk as well as
diffusion risk. After disaster strikes, the agent becomes more pessimistic and thinks further disaster will
arrive soon. However, if disaster still does not strike yet, the agent becomes gradually less pessimistic.

We find that diffusion and jump misspecification will impact the optimal portfolio decision. Further-
more, under the robust measure, disaster probability increases after disasters happen and decrease the
expected return. Moreover, endogenous time-varying state variable in our model leads to heavy-tailed
distributions of optimal portfolio weight and expected return under subjective belief.

Our study emphasizes the importance of jump tail behavior in optimal portfolio formation. It provides
a mechanism to rationalize the negative correlation between investors’ subjective expected return and rare
disaster risk, documented in survey data (Giglio et al., 2021).
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A Proofs

A.1 Proof of Lemma 1

When u and θ are both bounded and that θ is bounded away from −1, we claim that EB[Zq
t,s] is bounded

uniformly in s ∈ [t, T ] for any q ∈ R. To see this, we obtain from (3) that

Zq
t,s = exp

{∫ s

t

[
− q

2
u2
v +

∫ [
q ln(1 + θ(v, z))− qθ(v, z)

]
λν(dz)

]
dv −

∫ t

s

quvdB
B
v

+

∫ t

s

∫
q ln(1 + θ(v, z))ÑB(dv, dz)

}
.

Because u and θ are both bounded and θ is bounded away from −1, the claim follows from taking
B-expectation on both sides.

Itô’s formula for processes with jumps (see e.g. Protter, 2005, Chapter II, Section 7 yields

dDt,s =−
Zt,s− − Zη

t,s−

1− η
usdB

B
s −

∫
R

[θ(s, z)
η − 1

Zt,s− − (1 + θ(s, z))η − 1

η(η − 1)
Zη

t,s−

]
ÑB(ds, dz)

+
1

2
Zη

t,s−u
2
sds+

∫
R
Zη

t,s−λ

(
1 + θ(s, z)

)η − 1− ηθ(s, z)

η(η − 1)
ν(dz)ds.

(A.1)

It follows from Hölder’s inequality that

EB
t

[ ∫ T

t

e−δ(s−t)(Zt,s− − Zη
t,s−)

2Ψ2
s−|us|2ds

]
≤ CEB

t

[ ∫ T

t

e−δ(s−t)(Zt,s− − Zη
t,s−)

2qds
] 1

qEB
t

[ ∫ T

t

e−δ(s−t)Ψ2p
s−ds

] 1
p
,

where C = max |u| and 1/p + 1/q = 1. Because EB
t

[ ∫ T

t
e−δ(s−t)Ψ2p

s−ds
]
< ∞ by assumption and

EB
t

[ ∫ T

t
e−δ(s−t)(Zt,s− − Zη

t,s−)
2qds

]
< ∞, the process

∫ ·
t
e−δ(s−t)(Zt,s− − Zη

t,s−)usdB
B
s is a martingale

under B. Meanwhile,

EB
t

[ ∫ T

t

e−δ(s−t)Ψs−|θ(s, z)|Zt,s−λν(dz)ds
]
≤ CEB

t

[ ∫ T

t

e−δ(s−t)Z2q
t,s−ds

] 1
2qEB

t

[ ∫ T

t

e−δ(s−t)Ψ2p
s−ds

] 1
2p
,

where the constant C depends on max |θ|, δ and T . Both expectations on the right-hand sides are finite.
It then follows from Remark 6.4 c) in Cinlar, 2011, Chapter VI that

∫ ·
t
Ψs−

∫
R

θ(s,z)
η−1

Zt,s−Ñ
B(ds, dz) is a

martingale under B. The same statement holds for
∫ ·
t
Ψs−

∫
R

(1+θ(s,z))η−1
η(η−1)

Zη
t,s−Ñ

B(ds, dz) as well.

34



Choose Φt = Z1−η
t and use the martingale properties obtained above, we obtain

RU
t =

1

Φt

EB
t

[ ∫ T

t

e−δ(s−t)Ψs−dDt,s

]
= EU

t

[ ∫ T

t

e−δ(s−t)Ψs−Z
η−1
s−

(1
2
u2
s + λ

∫
R

(
1 + θ(s, z)

)η − 1− ηθ(s, z)

η(η − 1)
ν(dz)

)
ds
]
.

(A.2)

Define RU,D
t and RU,J

t as in (6) and (7), respectively. We have RU
t = RU,D

t +RU,J
t .

A.2 Proofs of Propositions 1 and 2

The dynamics of Zt follows

dZt

Zt−
= −utdB

B
t +

∫
R
θ(t, z)

(
N(dt, dz)− λν(dz)dt

)
. (A.3)

By Itô formula for jump-diffusion, the utility index U c
t follows the dynamic

dU c
t =∂tUdt− ∂ZU · Zt−

(
utdB

B + λ

∫
R
θ(t, z)ν(dz)dt

)
+ ∂cU · ct−

(
σcdBB +

(
µc + λ

∫
R
zν(dz)

)
dt

)
+

1

2
∂2
ZZU · (utZt−)

2dt+
1

2
∂2
ccU · (σcct−)

2dt− ∂2
ZcU · (utZt−)(σcct−)dt

+

∫
R

{
U
(
t, ct−(1− z), Zt−(1 + θ(t, z))

)
− U

(
t, ct−, Zt−

)}
N(dt, dz).

(A.4)
We can solve the the optimal distortions for utility index (12) via martingale approach, as

e−δtZtU c
t+

∫ t

0

e−δsZs

{
δU (cs) + Ψs−Z

η−1
s−

( 1

2ΘD

u2
s +

λ

ΘJ

∫
R

(
1 + θ(s, z)

)η − 1− ηθ(s, z)

η(η − 1)
ν(dz)

)}
ds

(A.5)
is B-martingale under optimal u and θ. Applying Itô formula to pervious equation, we have

−δe−δtZtU c
t + e−δtd (ZtU c

t )

+ e−δtZt

{
δU (ct) + Ψs−Z

η−1
s−

( 1

2ΘD

u2
s +

λ

ΘJ

∫
R

(
1 + θ(s, z)

)η − 1− ηθ(s, z)

η(η − 1)
ν(dz)

)}
ds

(A.6)
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where d (ZtU c
t ) follows

dZtU c
t =∂tU · Zt−dt−

(
U c
t− + ∂ZU · Zt−

)
Zt−

(
utdB

B + λ

∫
R
θ(t, z)ν(dz)dt

)
+ ∂cU · Zt−ct−

(
σcdBB +

(
µc + λ

∫
R
zν(dz)

)
dt

)
+

1

2

(
∂2
ZZU · Zt− + 2∂ZU

)
(utZt−)

2dt+
1

2
∂2
ccU · Zt−(σcct−)

2dt−
(
∂cU + ∂2

ZcU · Zt−
)
(utZt−)(σcct−)dt

+

∫
R

{
Zt−(1 + θ(t, z) · U

(
t, ct−(1− z), Zt−(1 + θ(t, z))

)
− Zt− · U

(
t, ct−, Zt−

)}
N(dt, dz).

Since (A.5) is a martingale under optimal distortions, we must have the drift of (A.6) equals to zero
under B. Factoring out e−δtZt−, we have following HJB equation,

0 = inf
u,θ

− δU c
t + ∂tU −

(
U c
t− + ∂ZU · Zt−

)
λ

∫
R
θ(t, z)ν(dz) + ∂cUct−

(
µc + λ

∫
R
zν(dz)

)
+

1

2

(
∂2
ZZU · Zt− + 2∂ZU

)
u2
tZt− +

1

2
∂2
ccU(σcct−)

2 −
(
∂cU + ∂2

ZcU · Zt−
)
ut(σcct−)

+ δU (ct) + Ψt−Z
η−1
t−

( 1

2ΘD

u2
t +

λ

ΘJ

∫
R

(
1 + θ(t, z)

)η − 1− ηθ(t, z)

η(η − 1)
ν(dz)

)
+ λ

∫
R

{
(1 + θ(t, z) · U

(
t, ct−(1− z), Zt−(1 + θ(t, z))

)
− U

(
t, ct−, Zt−

)}
ν(dz)

(A.7)

Collect the terms depends on u, θ receptively,

inf
u

1

2ΘD

Ψt−Z
η−1
t− u2

t +
1

2

(
∂2
ZZU · Zt− + 2∂ZU

)
Zt−u

2
t −

(
∂cU + ∂2

ZcU · Zt−
)
(σcct−)ut (A.8)

inf
θ

λ

ΘJ

Ψt−Z
η−1
t−

∫
R

(
1 + θ(t, z)

)η − 1− ηθ(t, z)

η(η − 1)
ν(dz)

+ λ

∫
R

{
(1 + θ(t, z))U

(
t, ct−(1− z), Zt−(1 + θ(t, z))

)
− θ(t, z)

(
U c
t + ∂ZU · Zt−

)}
ν(dz)

(A.9)

Proposition 1 follows the same proof as Proposition 1 in Maenhout et al., 2021. For θ, the first-order
condition yields

1− (1 + θ(t, z)
)η−1

η − 1

1

ΘJ

Ψt−Z
η−1
t− = U

(
t, ct−(1 + γ(z)), Zt−(1 + θ(t, z))

)
− U c

t︸ ︷︷ ︸
≡Λt

+ ∂ZU
(
t, ct−(1− z), Zt−(1 + θ(t, z))

)
· (1 + θ(t, z))Zt− − ∂ZU · Zt−︸ ︷︷ ︸

=Zt−∂ZΛt≡FtΛt

(A.10)
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where Λ describes the utility change and ΛF
Z

describes the change in ∂ZU , due to jumps in c. The optimal
jump distortion is

θ∗(t, z) =

[
1− (η − 1)ΘJΛt[1 + Ft]

Ψt−
Z1−η

t−

] 1
η−1

− 1 (A.11)

Since pessimism means that θ > 0 and we assume random jump size z > 0. When z and θ(t, z) are
infinitesimally small, Λt defined above is approximately −∂cUctz + ∂ZUZtθ(t, z). Because z > 0 and
θ > 0, the previous expression resemble −Γt of the diffusion distortion. When Γ > 0, we expect Λ < 0.

Consider η < 1 and a positive shock to Poisson process N . Because θ > 0 when pessimism, Z in
(A.3) increases after the shock and Z1−η increases as well. Then, holding Λ[1 + F ] < 0 unchanged and
Ψt > 0, [1 − (η−1)ΘJΛt[1+Ft]

Ψt−
Z1−η

t− ]
1

η−1 is larger than 1 and increases when Z1−η increases. As a result,
θ∗(t, z) increases. Similar analysis can be done when η > 1.

When η = 1, the terms depending on θ in HJB equation (A.7) becomes

inf
θ

λ

ΘJ

Ψt−

∫
R

[(
1 + θ(t, z)

)
log
(
1 + θ(t, z)

)
− θ(t, z)

]
ν(dz)

+ λ

∫
R

{
(1 + θ(t, z))U

(
t, ct−(1− z), Zt−(1 + θ(t, z))

)
− θ(t, z)

(
U c
t + ∂ZU · Zt−

)}
ν(dz)

The first-order condition respect to θ from pervious equation,

− 1

ΘJ

Ψt− log
(
1 + θ(t, z)

)
= Λt[1 + Ft]

gives the optimal θ for η = 1 in (18).
Suppose that

∫
R ν(dz) < ∞. If θ is restricted to processes independent of z, then the first order

condition of θ in (A.10) is transformed to

1− (1 + θt)
η−1

η − 1

1

Θ
Ψt−Z

η−1
t−

∫
R
ν(dz) =

∫
R
(Λt + Zt−∂ZΛt) ν(dz)

where θt replaces θ(t, z) in the definitions of Λt and Ft is redefined as FtEν(dz)[Λt] ≡ Zt−Eν(dz)[∂ZΛt].

A.3 Proof of Proposition 3

Before proving Proposition 3, we first prepare the following result.
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Lemma 2. Given Z1, the worest-case belief distortions in the second stage are given by

u∗
1 = ΘDZ

1−η
1 σπ1, (A.12)

θ∗1 =

[
1− (η − 1)

1− γ
ΘJZ

1−η
1 Eν

[
(1− π1J)

1−γ − 1
]] 1

η−1

− 1, (A.13)

where J is random variable with distribution ν. The optimal portfolio weight π∗
1 satisfies

µ− r − σu∗
1 + λJ̄ − γπ∗

1σ
2 − λ(1 + θ∗1)Eν

[
(1− π∗

1J)
−γ J

]
= 0. (A.14)

The optimal consumption-wealth ratio c̃∗1 = δ
1
γ f(Z)−

1
γ .

Proof. Recall from (23) and (24), the wealth dynamic under U follows

dWt

Wt−
=
[
r + πt(µ− r)− πtσut − πtλθtJ̄ − ct

Wt−

]
dt+ πtσdB

U
t − πt

(
JtdNt − λ(1 + θt)J̄dt

)
(A.15)

The value function in the second stage satisfies the following HJB equation:

0 = −δV+ inf
u1,θ1

max
π,c

{
δU (c) + (1− γ)V Zη−1

1 P (u1, θ1)

+
∂V

∂W
W
[
r + π(µ− r)− πσu1 − πJ̄λθ1 −

ct
W

]
+

1

2

∂2V

∂W 2
W 2π2σ2

+ (1 + θ1)λ
{
V Eν

[
(1− πJ)1−γ − 1

]
+

∂V

∂W
WπJ̄

}}
.

(A.16)

The value function admits the decomposition V (W,Z) = 1
1−γ

W 1−γf(Z). Plugging this decomposition
into (A.16), we obtain the following first-order condition for u1, θ1 and c1:

u1 :
1− γ

ΘD

V Zη−1
1 u1 − (1− γ)πσV = 0 ⇒ u∗

1 = ΘDZ
1−η
1 σπ.

θ1 :
1− γ

ΘJ

V Zη−1 (1 + θ1)
η−1 − 1

(η − 1)
+ V Eν

[
(1− πJ)1−γ − 1

]
= 0

⇒ θ∗1 =

[
1− (η − 1)

1− γ
ΘJZ

1−η
1 Eν

[
(1− πJ)1−γ − 1

]] 1
η−1

− 1.

c1 : δc−γ − (1− γ)
V

W
= 0 ⇒ c∗1 = δ

1
γ f(Z)−

1
γW1
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Collect and maximize the terms with π in (A.16),

max
π

(1− γ)V
[
(µ− r)− σu1 + λJ̄

]
π − 1

2
γ(1− γ)V π2σ2 + λ(1 + θ1)V Eν

[
(1− πJ)1−γ − 1

]
.

The first-order condition for π is given in (A.14).
Because 1 − γ and V are of the same sign, meanwhile ΘD,ΘJ > 0, the second order conditions are

satisfied as well:

u1 :
1− γ

ΘD

V Zη−1
1 ≥ 0,

θ1 :
1− γ

ΘJ

V · Zη−1
1 (1 + θ1)

η−2 ≥ 0,

c1 : −δc−γ−1 < 0

π : −γ(1− γ)V σ2 − γ(1− γ)λ(1 + θ1)V Eν

[
(1− πJ)−γ−1J2

]
≤ 0.

Finally, the optimal belief distortions and consumption-investment strategies in the second stage are the
constants identified by above first-order conditions.

The π is a admissible strategy, where π∗
t JNt ≤ 1.

Proof of Proposition 3. Suppose that π∗
1 decreases as Zη−1

1 increases, we will derive a contradict.
First, as Zη−1

1 increases and π∗
1 decreases, (A.12) implies that u∗

1 decreases. Second, the admissibility
of π∗ ensures that π∗

1J < 1. Therefore, − 1
1−γ

Eν [(1− π∗
1J)

1−γ − 1] decreases as π∗
1 decreases. As

Zη−1 increases, (A.13) implies that θ∗1 decreases. Third, the first-order condition for π1 in (A.14) can be
decomposed into three parts:

Part 1 : (µ− r)− σu∗
1 + λJ̄,

Part 2 : −γπ∗
1σ

2,

Part 3 : −λ(1 + θ∗1)Eν

[
(1− π∗

1J)
−γ J

]
.

Part 1 increases because u∗
1 decreases. Part 2 increases because we assume that π∗

1 decreases. For Part 3,

∂π∗
1
Eν

[
(1− π∗

1J)
−γ J

]
> 0,

for π∗
1 satisfying π∗

1J < 1. Then Eν

[
(1− π∗

1J)
−γ J

]
is positive and decreases as π∗

1 decreases. We
have seen from the previous argument that 1 + θ∗1 is positive and decreases. Therefore, Part 3 increases
as Zη−1

1 increases and π∗
1 decreases. In summary, we have shown that all parts on the left-hand side of
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the first-order condition (A.14) increase as π∗
1 and Zη−1

1 decrease. This contradicts with the first order
condition (A.14). Therefore, π∗

1 must increases when Zη−1
1 increases.

A.4 Proof of Proposition 4

Recall ZD and ZJ from (1) and (2). They satisfy

ZD
t = exp

(
−
∫ t

0

usdB
B
s − 1

2

∫ t

0

|us|2ds
)
,

ZJ
t = exp

{∫ t

0

ln(1 + θs)dÑ
B
s +

∫ t

0

λ
(
ln(1 + θs)− θs

)
ds
}
.

Therefore, x, defined in (31), follows the dynamics

dxt = utdB
B
t − ln

(
1 + θt

)
dÑB

t +

(
1

2
u2
t − λ

(
ln(1 + θt)− θt

))
dt

= utdB
U
t − ln

(
1 + θt

)
ÑU

t −
(
1

2
u2
t + λ

(
(1 + θt) ln(1 + θt)− θt

))
dt,

where ÑB
t = Nt − λt and ÑU

t = Nt − λ(1 + θt)t are compensated Poisson process under B and U,
respectively.

We will first derive the HJB equation that the function f , defined via (35), satisfies. To this end, the
wealth dynamics follows

dWt

Wt−
=
[
r + πt(µ− r)− πtσut + πtλJ̄ − c̃t

]
dt+ πtσdB

U
t − πtJtdNt, (A.17)

where c̃t =
ct

Wt−
is the consumption-wealth ratio. Itô formula for jump diffusions implies that W 1−γ

t and
ef(t,xt) follow the dynamics

dW 1−γ
t

W 1−γ
t−

= (1− γ)

(
r + πt(µ− r)− πtσut + πtλJ̄ − c̃t −

1

2
γπ2

t σ
2

)
dt+ (1− γ)πtσdB

U
t

+
(
(1− πtJ)

1−γ − 1
)
dNt (A.18)

def(t,xt)

ef(t,xt−)
= ∂tfdt+ ∂xf

(
utdB

U
t −

(
1

2
u2
t − λθt

)
dt

)
+

1

2

(
∂xf

2 + ∂xxf
)
u2
tdt

+
(
ef(t

−,xt−−ln(1+θt))−f(t−,xt− ) − 1
)
dNt (A.19)
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It then follows from the martingale principle that

e−δtVt +

∫ t

0

e−δs

{
δU (cs) + (1− γ)Vs−e

(1−η)xt−
( 1

2ΘD

u2
s +

λ

ΘJ

(
1 + θs

)η − 1− ηθs

η(η − 1)

)}
ds (A.20)

is U-martingale under optimal (π∗, c∗) and (u∗, θ∗), a U-supermartingale when an arbitrary (π, c) and the
optimal (u∗, θ∗) are employed, and a U-submartingale when the optimal (π∗, c∗) and an arbitrary (u, θ)

are employed. Applying Itô formula and using the decomposition (35), we obtain the dynamics of the
process in (A.20) as

−δe−δtW
1−γ
t

1− γ
ef(t,xt)dt+

e−δt

1− γ
d
(
W 1−γ

t ef(t,xt)
)

+ e−δt

{
δU (ct) + (1− γ)

W 1−γ
t−

1− γ
ef(t,xt−)e(1−η)xt−

( 1

2ΘD

u2
t +

λ

ΘJ

(
1 + θt

)η − 1− ηθt

η(η − 1)

)}
.

(A.21)

Meanwhile d
(
W 1−γ

t ef(t,xt)
)

follows

d
(
W 1−γ

t ef(t,xt)
)

W 1−γ
t− ef(t

−,xt−)
=(1− γ)

[(
r + πt

(
µ− r − σut + λJ̄

)
− c̃t −

1

2
γπ2

t σ
2 + ∂xfπtσut

)
dt+ σdBU

t

]
+

(
∂tf − ∂xf

(1
2
u2
t − λθt

)
+

1

2

(
(∂xf)

2 + ∂xxf
)
u2
t

)
dt+ ∂xfutdB

U
t

+
[
(1− πtJt)

1−γ ef(t
−,xt−−ln(1+θt))−f(t−,xt− ) − 1

]
dNt.

(A.22)
Combining the previous two dynamics and utilizing the martingale principle, we obtain the following
HJB equation:

0 = sup
π,c̃

inf
θ,u

{
− δ

1− γ
+ r + π

(
µ− r − σu+ λJ̄

)
− c̃+ ∂xfπσu− 1

2
γπ2σ2

+
1

1− γ

[
∂tf − ∂xf(

1

2
u2 − λθ) +

1

2

(
(∂xf)

2 + ∂xxf
)
u2

]
+

λ(1 + θ)

1− γ

{
EB [(1− πJ)1−γ] ef(t,x−ln(1+θ))−f(t,x) − 1

}
+

δ

1− γ
c̃1−γe−f(t,x) + e(1−η)x

( 1

2ΘD

u2 +
λ

ΘJ

(
1 + θ

)η − 1− ηθ

η(η − 1)

)}
.

(A.23)

The optimal belief distortion (u∗, θ∗), portfolio weight π∗ and consumption-wealth ratio c̃∗ are obtained
by first-order conditions, when the following second order conditions are satisfied:
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1. γeff(t, x)σ2 is positive definite,

2. (1− γ)
[
(∂xf)

2 + ∂xxf − ∂xf + 1−γ
Θ

e(1−η)x
]
> 0,

3. |∂xf | cannot be too large, i.e., cannot be << 0 or >> 1.

When x is x or x̄, the boundary conditions of f are specified by the value f fr, which is independent of
x, and it satisfies the following ODE, obtained by setting ∂xf = 0, ∂xxf = 0, and removing terms related
to jumps in x from the HJB equation (A.23):

0 = sup
π,c̃

inf
θ,u

{ ∂tf

1− γ
− δ

1− γ
+ r + π

(
µ− r − σu+ λJ̄

)
− c̃− 1

2
γπ2σ2 +

λ(1 + θ)

1− γ

{
Eν

[
(1− πJ)1−γ]− 1

}
+

δ

1− γ
c̃1−γe−f + e(1−η)x

( 1

2ΘD

u2 +
λ

ΘJ

(
1 + θ

)η − 1− ηθ

η(η − 1)

)}
.

The first-order conditions give the optimal values for (u, θ, π, c) at the boundary, denoted as (ufr, θfr,
πfr, cfr). The second order conditions are satisfied if θfr > 0 and π is admissible.
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B Additional Plots and Table

Figure B.1: Optimal distortion and portfolio with only jump distortion

This figure plots optimal distortions and portfolios only with jump penalty. The time horizon is T=100 years, and the parameters
used are summarized in Table 2.

By forcing u equal to zero, we shut down the diffusion distortion and focus on the impact of jump
distortion. In this case, the impact of jump belief distortion on the portfolio is isolated. From Figure B.1,
jump distortion and portfolio position will change in the opposite direction over time. With a penalty
only for jump, jump distortion slightly changes over time, mainly changing with the state variable. This is
because the investors are forward-looking. Unless they expect a massive jump with high intensity in the
future (i.e., the sentiment state changes), they will not change their belief of market crashes dramatically.
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Figure B.2: Impact of jump intensity

This figure plots optimal distortions and portfolios at x = 0. The time horizon is T=100 years, and the parameters used are
summarized in Table 2.
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Figure B.3: Impact of jump size

This figure plots optimal distortions and portfolios at x = 0. The time horizon is T=100 years, and the parameters used are
summarized in Table 2.

Additionally, we can modify the jump intensity or size to examine the impact of jumps. An increase
in jump intensity or size results in greater jump risk and a reduction in subjective expected return.
Consequently, the agent holds fewer positions in the risky asset, as illustrated in Panel C of both Figure B.2
and Figure B.3. It is also evident that jump risk influences not only jump belief but also diffusion belief over
time. In Figure B.2, the agent assigns a larger penalty to model uncertainty as jump intensity increases.
In Figure B.3, when the jump size is larger, the agent under-reacts to diffusion risk and over-reacts to jump
risk. Both cases conform to the same arguments presented in the state dependence section.
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Table B.1: Sensitivity Estimation
Model Estimation

State-dependent 11.846

(0.002)

State-independent (η = 1) 10.753

Jump-Diffusion 15.844

Merton 19.580

Giglio et al., 2021 1.164

(0.061)
The regression for state-dependent case is based on the simulated data in the fifth year, with T = 30 years. The parameters used
for all four cases are summarized in Table 3.

Giglio et al., 2021 finds a relatively small sensitivity of equity share in investors’ holding to shocks in
expectations from survey data. Using simulated data based on our model, we estimate the sensitivity β of
equity shares to expected excess return,

EquitySharei,t = α + β(Ei[R]−Rf ) + ϵi (B.1)

where intercept α should be zero under the rational expectation framework. To compare with the
cross-sectional result in Giglio et al., 2021), we take the simulated panel data at fifth year to estimated
the sensitivity, allowing agents’ sentiments generating diversified dynamics. From Table B.1, one can
observe that increase in the subjective expected return will bring less impact on the portfolio in our model,
compared with jump-diffusion or Merton model, while being larger than Giglio et al., 2021’s 1.164, for
samples with expected returns around 5%. In Merton model, β corresponds to 1

γσ2 , where stock volatility
σ is fixed at 15.98% in our simulation setting. In other model settings, investors implicitly have higher risk
aversion levels, which causes less sensitive demand. Two main factors drive risk aversion to increase: first
is jump risk, which can be observed by comparing β in jump-diffusion and the Merton model. Even though
the jump is compensated, an additional risk source will make investors more risk-averse. A novel factor
in this paper is model uncertainty. With robustness concerned, a pessimistic investor distorts her belief
away from baseline belief, leading to a higher effective risk aversion level γeff. Besides, investors with
state-independent penalty tend to have smaller risk aversion than state-dependent ones, as the simulated
sentiment variable x has positive drift and state-dependent investors tend to be less pessimistic.
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C Special case η = 1

When η = 1, the value function is independent of the state varible x. Consider the jump intensity
uncertainty only, the HJB equation becomes

0 = sup
π,c̃

inf
θ,u

∂tf

1− γ
+

δ

1− γ
c̃1−γe−f + r − c̃t −

δ

1− γ
+

(
1

2ΘD

u2
t +

λ

ΘJ

((1 + θt) log (1 + θt)− θt)

)
+ πt

(
µ− r − σut + λJ̄

)
− γ

2
π2
t σ

2 +
λ (1 + θt)

1− γ
EB [(1− πtJt)

1−γ − 1
]

(C.1)
F.O.C. gives

ut : ut = ΘDσπt (C.2)

θt : 0 =
1

ΘJ

log(1 + θt) +
1

1− γ

{
EB [(1− πtJt)

1−γ]− 1
}

(C.3)

πt : µ+ λJ̄ − r = (γ +ΘD)πtσ
2 + λ (1 + θt)EB [(1− πtJt)

−γ Jt
]

(C.4)

As we see from the numerical result in Figure 6, θt will not converge to η = 1 case when T = 100.
To see the dependency between θ and η, we can assume after τ , state variable x doesn’t change and stays
at 0. For η ̸= 1, the first-order condition (38) becomes

0 =
1

ΘJ

(1 + θτ )
η−1 − 1

η − 1
+

1

1− γ

{
EB [(1− πτJτ )

1−γ]− 1
}

(C.5)

If π, u converge to the same values as η = 1, by first-order conditions for different η, we have

(1 + θτ )
η−1 − 1

η − 1
= log (1 + θτ ) (C.6)

where optimal θτ depends on the value of η.
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D Numerical algorithm

In this section, we present numerical framework to solve the HJB equations in Proposition 4 with the
finite difference method. Here, the jump size J is treated as a random variable. In implications part, J is
specified as a constant level.

First, discretize x from xmin to xmax with equal spaced grid size ∆x, and discretize t from 0 to T

with equal spaced grid size ∆t. The function f associated with HJB (36) is evaluated on grid point
(m∆x, n∆t). Take x(m) = xmin +m∆x and t(n) = n∆t for m = 1, . . . ,M and n = 0, . . . , N , denote
f(m,n) = f(x(m), t(n)).

We define

It = EB [(1− πtJt)
1−γ] = ∫

R
(1− πtJt)

1−γ ν(dJ) (D.1)

I ′t = EB [(1− πtJt)
−γ Jt

]
=

∫
R
(1− πtJt)

−γ Jtν(dJ) (D.2)

and approximate f (x(m)− ln (1 + θ(m,n)) , t(n))− f (m,n) by

∆fmid(m,n+ 1) = f(m− k, n+ 1)w + f(m− k − 1, n+ 1)(1− w)− f(m,n) (D.3)

where ω = (k+1)∆x−ln(1+θ(m,n))
∆x

if ln(1 + θ(m,n)) ∈ [k∆x, (k + 1)∆x].
Discretization of HJB (36) is

0 =
f(m,n+ 1)− f(m,n)

∆t
+

1

2
u2(m,n)

[f(m+ 1, n) + f(m− 1, n)− 2f(m,n)

(∆x)2

+ (∂xf(m,n+ 1)− 1)
f(m+ 1, n)− f(m− 1, n)

2∆x

]
+

f(m+ 1, n)− f(m− 1, n)

2∆x

[
(1− γ)π(m,n)σu(m,n) + λθ(m,n)

]
+ γδ

1
γ e−

1
γ
f(m,n+1) − δ + (1− γ)e(1−η)x(m)

(
1

2ΘD

u2(m,n) +
λ

ΘJ

(1 + θ(m,n))η − 1− ηθ(m,n)

η(η − 1)

)
+ (1 + θ(m,n))λ

[
e∆fmid(m,n+1) · I(m,n)− 1

]
+ (1− γ)

[
r + π(m,n)

(
µ− r − σu(m,n) + λJ̄

)
− 1

2
γσ2π(m,n)2

]
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Rearrange the above equation, we obtain(
1 +

∆t

(∆x)2
u2(m,n)

)
f(m,n) ={

1

2
u2(m,n)

[ ∆t

(∆x)2
+

∆t

2∆x
(∂xf(m,n+ 1)− 1)

]
+

∆t

2∆x

[
(1− γ)π(m,n)σu(m,n) + λθ(m,n)

]}
f(m+ 1, n)

+

{
1

2
u2(m,n)

[ ∆t

(∆x)2
− ∆t

2∆x
(∂xf(m,n+ 1)− 1)

]
− ∆t

2∆x

[
(1− γ)π(m,n)σu(m,n) + λθ(m,n)

]}
f(m− 1, n)

+f(m,n+ 1) + ∆t

{
γδ

1
γ e−

1
γ
f(m,n+1) − δ + (1 + θ(m,n))λ

[
e∆fmid(m,n+1) · I(m,n)− 1

]
+ (1− γ)

[
r + π(m,n)

(
µ− r − σu(m,n) + λJ̄

)
− 1

2
γσ2π(m,n)2

]
+ (1− γ)e(1−η)x(m)

(
1

2ΘD

u2(m,n) +
λ

ΘJ

(1 + θ(m,n))η − 1− ηθ(m,n)

η(η − 1)

)}

where θ(m,n), π(m,n), u(m,n) are calculated via F.O.Cs (37), (38) and (39) at time n + 1. In code,
(θ(m,n), π(m,n)) are solved by minimizing an objective function, refer to (D.1). The terminal condition
is f(m,N) = log ε.

At the boundary, we deiscretization of ODE (41) at m = 0 or M ,

0 =
f(m,n+ 1)− f(m,n)

∆t
+ γδ

1
γ e−

1
γ
f(m,n) + (1− γ)

{
r + πfr (µ− r − σufr + λJ̄

)}
− 1

2
γ(1− γ)σ2(πfr)2

+ (1− γ)e(1−η)x(m)

(
1

2ΘD

(ufr)2 +
λ

ΘJ

(
1 + θfr

)η − 1− ηθfr

η(η − 1)

)
− δ + λ(1 + θfr) [I(m,n)− 1]

Rearrange the above equation, we obtain

f(m,n) = f(m,n+ 1) + ∆t

{
− δ + (1− γ)

[
r + πfr (µ− r − σufr + λJ̄

)
− 1

2
γσ2

(
πfr)2]

+ (1− γ)e(1−η)x(m)

(
1

2ΘD

(
ufr)2 + λ

ΘJ

(1 + θfr)η − 1− ηθfr

η(η − 1)

)
+ γδ

1
γ e−

1
γ
f(m,n) + λ

(
1 + θfr) [I(m,n)− 1]

}

Solve θfr, πfr, ufr by F.O.Cs with the root finding algorithm similar to Table D.1.
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Table D.1

Algorithm for solving First-order conditions

1. Given initial πold(m,n) and θold(m,n), calculate:
I(m,n) =

∑k−1
k=0 (1− π(m,n)Jk) ν (Jk)∆J , I ′(m,n) =

∑k−1
k=0 (1− π (m,n) Jk) Jkν (Jk)∆J

and ∆fmid(m,n+ 1) in (D.3).

2. Update π(m,n) and θ(m,n) with the values that minimize sum of squares of first-order
conditions (39) and (38), where u(m,n) substituted by π(m,n) using (37).

3. Update I(m,n), I ′(m,n), and ∆fmid(m,n+ 1) with πnew(m,n) and θnew(m,n).

4. Return to the second step until convergence or max iteration is met.

5. Calculate u(m,n) via the first-order condition (37).
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